
A Visual Programming Environment for Learning
Distributed Programming

Brian Broll
Vanderbilt University
Nashville, TN, USA

Ákos Lédeczi
Vanderbilt University
Nashville, TN, USA

akos.ledeczi@vanderbilt.edu

Péter Völgyesi
Vanderbilt University
Nashville, TN, USA

János Sallai
Vanderbilt University
Nashville, TN, USA

Miklós Maróti
Vanderbilt University
Nashville, TN, USA

Alexia Carrillo
Vanderbilt University
Nashville, TN, USA

ABSTRACT
This paper introduces NetsBlox, a visual programming en-
vironment for learning distributed programming principles.
Extending both the visual formalism and open source code
base of Snap!, NetsBlox provides two accessible distributed
programming abstractions to simplify the process of creating
networked applications: message passing and Remote Pro-
cedure Calls (RPC). Messaging passing allows NetsBlox ap-
plications to send data to other connected NetsBlox clients.
Remote Procedure Calls enable seamless integration of third
party services, such as Google Maps, weather, traffic and
other public domain data sources, into NetsBlox applica-
tions. Other RPCs help coordinating distributed clients
which may be difficult for novice programmers allowing the
user to more quickly create captivating and sophisticated ap-
plications. These abstractions empower users to develop net-
worked programs, including multi-player games and client-
server applications. By providing networking support, Nets-
Blox not only allows users to learn distributed programming
concepts but also makes programming more engaging by in-
corporating diverse services available on the web.

Keywords
visual programming, distributed programming, computer sci-
ence education, Snap!

1. INTRODUCTION
Visual programming has proven to be an effective envi-

ronment for teaching computer programming at the intro-
ductory level and a number of different educational tools [8,
3, 5] have been developed. Some have even leveraged com-
putational modeling to teach science [7, 2]. While many of
the currently available tools are quite effective, they all lack
the concept of networking. While it is understandable that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08-11, 2017, Seattle, WA, USA
c© 2017 ACM. ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017741

students would need to learn the basics of programming on
a single machine before they are able to develop distributed
applications, the prevalence of networking in day-to-day in-
teractions is nearly ubiquitous to the point where most peo-
ple interact with network-driven applications such as Face-
book, Google, Twitter, Snapchat, Skype and Netflix on a
daily basis. The recent emphasis on self-driving cars and
home automation suggests that the importance and perva-
siveness of distributed computation will only increase in the
coming years. Given the growing significance of network-
ing in today’s world, it is a difficult topic to ignore when
teaching introductory computer science.

The prevalence of networking in today’s world also pro-
vides a significant opportunity for teaching computer pro-
gramming by making it more relevant and engaging. It can
provide access to resources that are unavailable when simply
creating local applications. Integrating networking into CS
curriculum provides the opportunity for beginners to create
applications that interact with networked resources, includ-
ing scientific datasets, and can provide more relevance and
timeliness to the exercises and assignments.

At the college level, the ACM IEEE Computer Science
curriculum (2013) [9] advocates introducing the following
topics to CS students: asynchronous and synchronous com-
munication, reliable and unreliable protocols, and the need
for concurrency in operating systems. We strongly believe
that through the use of carefully designed distributed com-
puting abstractions, an intuitive, familiar user interface and
a sophisticated and scalable cloud-based infrastructure, it is
possible to teach the basics of distributed programming prin-
ciples to students who are still in high school. To this end, we
have created NetsBlox, a visual programming environment
designed to allow users to create distributed applications,
giving them a first hand experience in network program-
ming. NetsBlox extends the visual paradigm of Scratch [6]
and Snap! [8] and, consequently, provides a natural progres-
sion for students already familiar with these environments.

The rest of the paper is structured as follows. First we
introduce the distributed programming primitives at the
heart of NetsBlox. Then we show a few example applica-
tions that can be created using these simple abstractions.
Then we present the virtual overlay network model followed
by the description of the cloud-based architecture of the en-
vironment. Finally, we present the results from a small-scale
pilot study we conducted with 30 high school students.

2. DISTRIBUTED PRIMITIVES
One main strength of NetsBlox lies in its choice of simple,

accessible abstractions for distributed programming. These
abstractions have been designed to hide unnecessary com-
plexity while providing powerful, flexible primitives from
which users can develop complex networked applications.
The distributed abstractions provided by NetsBlox are Re-
mote Procedure Calls (RPC), Messages and the concept of
a Room.

Remote Procedure Calls are the simplest, yet most di-
verse, distributed abstraction for NetsBlox users. As the
name implies, RPC allows for invoking code that will be
executed at a remote location, and then (optionally) get-
ting back the results of the computation. The semantics of
RPC is as expected: multiple input arguments, single output
argument, pass-by-value and blocking call. Syntactically,
RPCs are represented as another block in the NetsBlox en-
vironment and are similar to custom blocks in Snap! RPCs
provide two major benefits to NetsBlox users: they provide
access to external resources in a NetsBlox-friendly way and
provide scaffolding for the user to create more complex ap-
plications by handling the difficult computation remotely.

Third party API access increases the relevancy of net-
worked programming thereby empowering students to inter-
act with familiar, existing web applications such as Google
Maps. The support for weather, traffic, air quality and other
APIs provides easy access to data, enabling users to better
integrate their applications into the real world. This allows
NetsBlox users to not only think about their single appli-
cation but how their application interacts with other net-
worked resources to serve its purpose.

NetsBlox RPCs simplify tasks that may be more difficult
for novice programmers enabling them to build more com-
plex and intriguing applications more quickly. For example,
the current NetsBlox prototype provides RPCs for Tic Tac
Toe and Battleship which manage the more complex aspects
of the game, allowing the users to design their games at a
higher level of abstractions. The user is therefore able to fo-
cus on when the applications are communicating with each
other and how the application will handle events (such as a
“hit” in Battleship) rather than struggling with the best way
to represent the state of the game, such as the board and
the boats on the board. Especially in a classroom setting,
this provides a natural progression for creating the given ap-
plication. Students can first build the game using the RPCs
then be asked to remove the RPCs and solve some of the
more difficult aspects of the given application in an iterative
fashion. As they will build a fully functioning application
more quickly, this scaffolding procedure will build student
confidence and allow them to focus on a subset of the prob-
lem at a time rather than being potentially overwhelmed
when trying to tackle all the challenges at once.

Another important network abstraction in NetsBlox is the
concept of Messages. Messages are very similar to Scratch
events. Individual event handlers can be created for the
given messages and receiving a message will trigger all mes-
sage handlers concurrently. Unlike Scratch and Snap!, Nets-
Blox messages are sent to remote clients and contain a struc-
tured data payload. Also, NetsBlox messages support peer
to peer communication in which users can send messages to
a single specific client (rather than simply broadcasting).

In order to support structured data payloads, NetsBlox
introduces the concept of a Message Type. A Message

Type defines the data that comprises the given type of mes-
sage. Defining Message Types allows the different clients to
agree upon a communication protocol; a necessity when cre-
ating a distributed application. Note that the send/receive
visual blocks dynamically restructure themselves based on
the selected message type. This provides a clear and concise
way to interact with structured data as the user is shown
only the necessary inputs or outputs of the given block. An
example of these dynamic messaging blocks can be seen in
Figure 1.

Figure 1: Messages with data in NetsBlox

In Figure 1, the “location” Message Type has been defined
with two fields: “lat” and “long”. Given this Message Type
schema, the“send msg”block has created two corresponding
inputs with hint text over each (which specify the name of
the given field). The message handler is updated similarly
where variable blocks have been created for each defined
field in the“location”Message Type. Figure 2 shows another
message handler block for a “chat” Message Type containing
three fields: “sender”, “time” and “message”.

Figure 2: Chat Message Handler Block

The third distributed programming abstraction is the con-
cept of the Room . Much like the Stage in Snap!, a room
is defined for every NetsBlox project. A room defines the
virtual local network for the given project and is composed
of a number of roles, or named NetsBlox clients. For ex-
ample, a Tic Tac Toe game would have two roles, “X” and
“O.” These roles can then be occupied by NetsBlox users
who want to play the given roles in the Tic Tac Toe game.
As the room is associated with the NetsBlox project, the
project owner is also the maintainer of the room. The room
simplifies network complexities such as client discovery and
network addressing. In NetsBlox, clients sharing a room can
see each other and can send messages to one another using
their client names (unique within the given room).

Roles are similar to projects in Snap! where each role has
its own sprites and stage which all have their own associated
scripts. Roles can also have their own custom blocks and
custom message types. When occupying a role, the user can
modify the scripts owned by the given role and can interact
with the users occupying the other roles in the room. As
the project owner also owns the associated room, he or she
manages the creation, modification and removal of roles from
a room as well as the users currently occupying roles in the
room (by inviting or evicting users).

Figure 3 shows the room editor for a NetsBlox project
titled “TicTacToe.” The sections of the room in the room
editor represent each role in the room. The bolded text
displays the given role’s name while the italicized text (below

Figure 3: NetsBlox Room

the role name) shows the username of the NetsBlox user
currently occupying the given role. The project name is also
displayed in the grey box in the center of the room editor
and is editable by the project owner on click. The owner of
the project can edit visible roles by clicking on them and can
create new roles with the button to the right of the room.

This room contains three roles: “X”, “O” and “watcher.”
The current user is occupying the “O” role and a user with
the name “john” is occupying the “X” role. The last role,
“watcher”, is left unoccupied. As this room defines the visi-
bility and addressing of the given roles, the“send msg”block
is automatically updated to contain the defined roles in the
“target”dropdown menu. That is, the“send msg”block now
provides “X” and “watcher” as options for the target of the
message sent from “O.”

3. EXAMPLE PROJECTS
Figure 4 shows an example application which displays his-

torical earthquake data. It incorporates the Maps RPC to
retrieve a dynamic map of the desired region (using Google
Maps). The application then uses the earthquake RPC to
request information about all earthquakes in the region the
user navigates to with the arrow keys and +/- for zoom-
ing. The RPC request triggers messages from the NetsBlox
server, one per earthquake event; the application then uses
a message handler which displays each earthquake on the
map.

This process is relatively easy to see in the code in Fig-
ure 4. The middle script is an event handler which is trig-
gered when it receives the local “showEarthquakes” event
triggered by a mouse click. It calls the earthquake RPC
which, in turn, initiates the messages from the server about
the earthquakes in the currently visible map region. The
bottom script is the corresponding message handler. It con-
tains the logic for drawing each earthquake on the map. This
is done by first moving the sprite to the given x and y co-
ordinate (converted from the latitude and longitude using
another NetsBlox RPC1). The sprite then draws the given
circle for the earthquake with a radius corresponding to its
magnitude. Finally, the top script stops further messages
and clears the map when its position or zoom is updated.

The earthquake application exemplifies both RPCs and
remote messages and highlights that they can be combined
to create a powerful application relatively simply. In this
case, messages provide users with a simple way to manage
structured data in an effective and concise manner within a
visual programming environment. As the earthquake RPC is

1This conversion is implemented as an RPC due to the com-
plexity of handling Mercator projections.

providing a list of structured data, the use of messages facil-
itates “unpacking” of the data into its composed fields while
managing the complexity introduced due to the request for
a potentially large number of these structured elements si-
multaneously.

Figure 5 shows an example of a Battleship multi-player
game implemented in NetsBlox including a portion of the
script of one of its sprites. This application uses RPCs to
coordinate the game by maintaining the game state, i.e.,
the players are still placing ships or are already firing upon
one another, etc., and sending the “hit” and “miss” events
after a player makes a move. This process simplifies the
development of the battleship game, providing users with
the necessary resources to quickly advance their distributed
programming skills.

4. NETWORK MODEL
NetsBlox requires a powerful yet intuitive network model.

It is important to note that the technical details described
here are completely hidden from users. The core design prin-
ciples are: (1) simplified distributed programming through
the elimination of tedious and error prone tasks to shield
programmers from distracting technical details and common
pitfalls that include firewalls, routing, address resolution,
automatic reconnection, etc., (2) uniform addressing and
discovery scheme for distributed artifacts, and (3) support
for both synchronous and asynchronous communication.

NetsBlox provides a virtual overlay network abstrac-
tion to eliminate many of these accidental complexities re-
sulting from network programming. This virtual overlay
network abstraction facilitates bidirectional, peer-to-peer co-
mmunication between NetsBlox clients without the need for
explicit message routing from the NetsBlox programmer.
This overlay network was built on top of existing network
technologies and does not have a one-to-one mapping be-
tween virtualized primitives and actual network packets and
connections. For example, NetsBlox utilizes a centralized
server to route all messages within NetsBlox and maintains a
persistent connection between the server and the connected
clients. This centralized approach enables NetsBlox to pro-
vide effective management and instrumentation capabilities.

These abstractions are presented to the user in the form
of two distributed primitives: Rooms and Roles. As intro-
duced in Section 2, a room is associated with each NetsBlox
project and roles are the NetsBlox clients associated with the
given room. That is, the room represents the virtual over-
lay network abstraction associated with the given NetsBlox
project and the roles represent the clients in this overlay
network. The use of a centralized approach to the overlay
network simplifies the challenge of discovering the available
clients as the NetsBlox server keeps record of the connected
clients and which role the given client is occupying.

Containers: To extend past web browsers and into more
diverse, heterogeneous execution environments, NetsBlox in-
troduces the idea of a container. A container is a NetsBlox
hosting environment which is capable of running NetsBlox
projects and providing the necessary services which are re-
quired for the given project. Currently, containers are avail-
able for the web browser and Android; in the future, con-
tainers will be developed for more platforms such as iOS,
networked embedded devices, such as the Raspberry PI, and
running as a service in the cloud.

Containers use a common JavaScript and HTML5 code

Figure 4: The Earthquake application

base and provide the required services, such as network con-
nectivity, to the hosted environment. Mobile platforms are
targeted using Apache Cordova which supports deployment
on a number of mobile platforms. The hosting environment
can be executed on-demand or registered as a background
service to allow remote application deployment.

Another main component of the NetsBlox network model
is the concept of coordination . While coordination among
a few clients in a small networked application can be simple;
coordination becomes much more challenging as the applica-
tion and number of clients grow. For example, a chat appli-
cation requires very little coordination between the given
roles; if a client wants to send a message he/she simply
enters the message (there are no rules about the order or
frequency of the messages). However, in the case of a two
player game such as Battleship, much more coordination
between the players is required. The game first expects the
users to place their ships and neither player can fire upon
the other until this placement period is over. After placing
the ships, the game still enforces typical turn-based rules;
that is, the players cannot fire upon one another until the
previous player has successfully made his/her move. Addi-
tionally, NetsBlox programmers may want to develop appli-
cations which support a flexible number of clients. In this
scenario, coordinating the discovery and routing of messages
becomes more complex.

NetsBlox addresses both of these accidental complexities
via the use of RPCs. As was introduced in Section 2, RPCs
trigger the execution of some remote functionality. They
also have the ability to store state information on the server.
This functionality enables them to house information (e.g.,
current turn), and manage the coordination of the clients
by enforcing rules (e.g., requiring roles to alternate turns).
Upon the start of a given role’s turn, the NetsBlox server
sends a notification to the respective role and initiates the
given role’s turn. This simplifies the coordination of roles in
the room by providing the user with the appropriate events

rather than leaving the management of the coordination of
the distributed roles to the user.

As RPCs can save state and send messages to NetsBlox
clients, they are powerful enough to solve the challenge of
creating applications with a flexible number of clients. Be-
cause of this, NetsBlox RPCs can easily be used to provide
publish-subscribe style messaging capabilities between Nets-
Blox clients from different rooms.

5. ARCHITECTURE
To support the network abstractions described above, as

well as the distributed programming primitives and the over-
all application life-cycle, we have developed and deployed a
cloud-based infrastructure and an easy-to-use web applica-
tion. The web application runs in the client browsers and
communicates with the NetsBlox server via HTTP and Web-
Socket interfaces.

The core server-side services include (1) hosting and serv-
ing the web application artifacts (2) project and user infor-
mation persistence, (3) RPC and message delivery services,
(4) authentication and run-time user association. We host
the server-side infrastructure on the Amazon Web Services
cloud computing platform and provide all software compo-
nents and deployment know-how on GitHub with MIT open
source licensing.

RPCs are implemented as REST endpoints hosted on the
originating server. REST provides a simple endpoint that
naturally supports synchronous requests from the client, en-
abling the creation of simpler RPCs that provide additional
functionality (such as Google Maps integration) seamlessly.
Project management tasks, e.g., authentication, project ac-
cess, table/role management, are also implemented by REST
primitives.

Bi-directional NetsBlox communication, such as message
delivery and asynchronous project notifications, are imple-
mented with WebSocket connections between the clients and
the servers. For supporting message passing among clients

Figure 5: The Battleship multi-player game

within the same room, we have implemented a virtual net-
work abstraction. In this model, each node initiates a Web-
Socket connection to the server and registers itself with one
of the active rooms. Messages from the client are sent throu-
gh this connection to the server, which takes care of the rout-
ing and fan-out—based on the current registrations. Note
that no direct communication channels are created between
browser clients, which would be extremely problematic thro-
ugh discrete and OS-level firewalls. Also, the server-based
message delivery mechanism makes it possible to record ac-
curate and ordered message traces, and to emulate arbitrary
network effects (packet loss, latency, integrity).

The high-level architecture of NetsBlox is shown in Fig-
ure 6. The server —implemented with server-side JavaScript

NETSBLOX
SERVER Node.js

WEB SERVER

PROJECT
MANAGEMENT

ROOM

RPC

ROOM

RPC
RPC

static
content

MongoDBprojects & users

USER
Web Browser

WebSocket

HTTP (REST)
USER

Web Browser USER
Web Browser

USER
Web Browser

WebSocket

messa
ges

HTTP (REST)

Figure 6: Network Architecture

technologies—provides web services and hosts the web ap-
plication (e.g., the development environment), which can be
accessed by browser-based clients. Projects and user infor-
mation are stored in a MongoDB database. As the first
step, a new client uses HTTP requests for downloading the
static artifacts of the web application. Once initialized, this
client application creates a permanent WebSocket link to-
wards the server for asynchronous two-way communication.
Finally, HTTP/REST connections are created on-demand
for accessing projects, joining rooms and invoking RPC ser-
vices from the users’ applications.

6. PRELIMINARY EVALUATION
We have recently completed a small-scale pilot study with

30 students at Hillsboro High School as part of the Interdis-
ciplinary Science and Research Program [4], a partnership
between the Center for Science Outreach (CSO) at Vander-
bilt University and Metropolitan Nashville Public Schools.
This pilot study assumed no prior programming experience
and taught programming concepts ranging from basic data
structures to complex networking.

The first half of the 9-week long curriculum introduced
computer programming using Snap!. After establishing an
understanding of basic programming concepts, the students
moved to NetsBlox and spent the second half of the course
learning basic distributed programming. The distributed
programming curriculum started by first introducing stu-
dents to RPCs using a developed weather map application.
After presenting the weather map application, students were
tasked with extending the project to show the weather of
three randomly selected locations currently visible on the
map (the map could move all around the world).

Following the introduction to RPCs, students were in-
troduced to more complex networked programming using

the earthquake application (see Figure 4). This example re-
quired students to use RPCs and messaging to retrieve the
relevant information. The students’ final assignment was to
use the network messaging functionality to develop a chat-
room in which different NetsBlox clients could communicate
with one another.

The students responded positively to the networking func-
tionality. Shortly after introducing the concept of remote
messaging (and providing a simple demo), the students were
given time to work in small groups and create applications
using messaging. We found that students were quite excited
to see the ability to send, even sometimes trivial, messages
from their computer to another student in the course. One
group in particular lined up all their computers and created
an application in which clients simply forwarded the mes-
sage along to other roles at the room (much like a game of
telephone). The students then demonstrated how they could
send a message and see it show up on each screen before it
was passed along to the next role in the room. The program
finished with the message being received by the intended
target, the last role in room.

Although the level of enthusiasm can be difficult to quan-
tify, we found that high school students enjoyed the social
aspect of developing networked applications. Networked ap-
plications also allowed the demonstrations to be more inter-
active as students were able to partake in the examples.

We conducted a brief survey of the students at the con-
clusion of the program to assess their attitudes towards the
small scale pilot study. Although students enjoyed the ad-
ditional network functionality, it was clear that the glitches
and bugs in the early prototype made it difficult for students
(and teaching staff) to focus on the new concepts while try-
ing to troubleshoot software errors.

It was clear that students with previous programming ex-
perience were much quicker to grasp the distributed pro-
gramming concepts and apply them successfully. These stu-
dents also had a more favorable view of the tool itself. While
these lessons are not surprising, it does emphasize the need
to develop a general foundation in programming and an ap-
plied knowledge of Snap! before attempting to teach them
distributed programming.

7. CONCLUSIONS
This paper presented NetsBlox, a scalable, visual pro-

gramming platform for learning distributed programming
principles. NetsBlox extends the well-known and widely-
used Snap! environment, providing a natural progression
into distributed programming for the expanding population
of students familiar with blocks-based programming envi-
ronments. NetsBlox is well equipped to support many of
the big ideas and computational thinking practices that the
AP CS Principles curriculum emphasizes due to its support
for distributed programming.

Furthermore, NetsBlox leverages powerful RPCs to pro-
vide access to third party web services, including APIs serv-
ing scientific, geographic and social databases within the
visual programming environment. This seamless integra-
tion of third party datasets empowers early programmers
to build applications which interact with the external world
and leverage this information to potentially enhance their
understanding of STEM concepts while developing computer
programming skills simultaneously.

Nevertheless, NetsBlox is in its infancy. Our future work

involves adding a lot of new services and data sources to
NetsBlox in the form of a large library of RPCs. Equally
important is the creation of new curricular modules that can
be incorporated to existing courses such as the Beauty and
Joy of Computing (BJC) [1]. Finally, a robust classroom
evaluation strategy will need to be developed and executed
to steer the ongoing development of NetsBlox in the right
direction.

8. ACKNOWLEDGMENTS
This work was supported by a Vanderbilt University TIPs

grant and the National Science Foundation under grants
CNS-1644848 and DRL-1640199. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

9. ADDITIONAL AUTHORS
Additional authors: Stephanie L. Weeden-Wright (Van-

derbilt University), Chris Vanags (Vanderbilt University),
Joshua D. Swartz (Hillsboro Comp High School), and Melvin
Lu (Vanderbilt University),

10. REFERENCES
[1] O. Astrachan and A. Briggs. The CS principles project.

ACM Inroads, 3(2):38–42, 2012.

[2] P. Blikstein and U. Wilensky. An atom is known by the
company it keeps: A constructionist learning
environment for materials science using agent-based
modeling. International Journal of Computers for
Mathematical Learning, 14(2):81–119, 2009.

[3] N. Fraser. Google blockly-a visual programming editor.
URL: http://code. google. com/p/blockly. Accessed Aug,
2014.

[4] Interdisciplinary Science and Research Program.
http://www.vanderbilt.edu/cso/isr/. Cited 2016
August 14.

[5] C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv., 37(2):83–137, June 2005.

[6] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: A sneak preview. In
Proceedings of the Second International Conference on
Creating, Connecting and Collaborating through
Computing, C5 ’04, pages 104–109, Washington, DC,
USA, 2004. IEEE Computer Society.

[7] P. Sengupta, J. Kinnebrew, S. Basu, G. Biswas, and
D. Clark. Integrating computational thinking with k-12
science education using agent-based computation: A
theoretical framework. Education and Information
Technologies, 18(2):351–380, 2013.

[8] Snap!: a visual, drag-and-drop programming language.
http://snap.berkeley.edu/snapsource/snap.html. Cited
2016 March 16.

[9] I. C. S. The Joint Task Force on Computing Curricula,
Association for Computing Machinery (ACM).
Computer science curricula 2013: Curriculum
guidelines for undergraduate degree programs in
computer science. http:
//www.acm.org/education/CS2013-final-report.pdf,
2013.

